A simplified method for the removal of cemented implant prosthetics

Dr Scott Davis
Australia

There are times when it becomes necessary to remove the cemented prosthetic restoration from one or more implants and the prosthesis is not amenable to conventional crown and bridge removal devices. In order to remove these prostheses, we need to gain access to the abutment screws by drilling through the crown or bridge. The challenge is to create the smallest possible access holes to remove these prostheses, to conventional crown and bridge, through the crown or bridge.

The challenge is to create the smallest possible access holes and to do this with a minimum of clinical time and effort. This article will describe a simple method for constructing and using a device to guide the development of appropriate access holes in the implant prosthesis.

I was lucky enough not to have a patient with a loose or damaged bridge to use for this presentation, so I used a patient education model to provide the images to facilitate the description of the technique (Figs. 1a & b). Figure 2 shows the location of the access holes. Ideally, porcelain should be removed using a diamond high-speed bur with copious irrigation. I prefer to use a round diamond bur for this purpose, as it is less likely to cause porcelain chipping. If the prosthesis is metal ceramic, the substructure is first penetrated with a small round carbide bur. Subsequently, a metal-cutting tungsten carbide bur is used to widen the access as required. Figure 10 shows a screwdriver passing through the guide into the abutment screw. Figures 11a and b show the precision of the preparation without over-preparation.

Once the access hole has been deburred of obstructing materials, an appropriate screwdriver is inserted. In order to prevent ceramic delamination, it is important to ensure the driver is not contacting any porcelain before significant torque is applied. I initially insert the driver and inspect for lack of contact with the porcelain. Following, I apply light hand torque to the driver in order to determine that it is fully seated before a second inspection to ensure no porcelain contact. Finally, the screw and the prosthesis are removed.

Discussion

Drilling free hand into the prosthesis with no guide can result in oversized access holes and wasted chairside time. The primary goal of the method described here is to maximise laboratory procedures in order to reduce chairside time. We also minimise the size of the access holes, which reduces the damage to the prosthesis.

Delegation of the construction of the device to a technical assistant can further reduce cost, for both the patient and us. Thereby, a task to which we look forward with trepidation can be reduced to a minor inconvenience.

By minimising the diameter of the access holes, we increase the probability that the prosthesis can be returned to the patient after dealing with the reason for removal. Once the prosthesis has been removed from the mouth, there are two options. Firstly, we could consider the abutment/prosthesis as a single item. After inspection and cleaning, the prosthesis can be replaced. Had the abutment screw become loose, then the grain structure of the screw may have become elongated and the screw should be replaced.

The second option is separating the abutment from the crown or bridge. When they cannot be separated by mechanical means, they can be separated by gentle heating in a furnace. Slowly heat to less than 200 °C for five minutes, then the abutment and prosthesis should separate very easily. Allow to cool to room temperature slowly, then inspect porcelain for defects before explosive re-turning to the patient.

Dr Scott Davis works in a private prosthodontics practice in Port Macquarie in Australia. He can be contacted at scott@davisdental.com.au.